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Abstract

In recent years we have seen the introduction of new tools for the analysis of sur-
vey list experiments, most notably the Item Count Technique (ICT-MLE) regression
model (Imai, 2011). This estimator promises to extract more from the data–and more
efficiently–than traditional difference-in-means analysis but it leans heavily on assump-
tions about responses at the extremes (choosing no or all items on the list). I argue
that the assumptions required to identify and estimate the ICT-MLE are unlikely to
hold in many applied settings. I document that such problems arise in practice and
then report the results of Monte Carlo experiments examining the sensitivity of two
estimators to various types of respondent error. I find that both the difference in means
estimator and the the ICT-MLE are sensitive to measurement error, but the problems
are much more severe for the ICT-MLE. Respondent error directed disproportionately
toward the extreme responses is most pernicious for both estimators. This bias in
the ICT-MLE becomes more extreme as the underlying population prevalence of the
sensitive item declines. I provide guidance for extra care when considering the use of
the ICT-MLE as well as suggestions for further research.
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Social scientists are often interested in people’s thoughts and behavior around sensitive

issues, such as racial attitudes, sexual behaviors, participation in illegal or undesirable ac-

tivities, or simply eliciting an honest report of voter turnout. Directly asking people about

such topics is unlikely to generate truthful responses so researchers have developed several

methods of indirect questioning.1 Survey list experiments, originally developed decades ago,

are one potentially useful tool for indirectly asking respondents to reveal their thoughts on

sensitive topics.

Traditional list experiments achieve this by randomly dividing respondents into two

groups. Respondents in the baseline (or control) group are presented with a list of innocuous

items and asked how many (as opposed to which) items pertain to them. Respondents in

the treatment group are presented with the same list of items along with one additional item

describing the sensitive attribute of interest. Asking respondents to report a number pro-

tects their individual privacy around the sensitive item—unless those in the treatment group

select the maximum or minimum value. Assuming randomization worked appropriately, the

only difference, on average, between the treatment and control groups is the number of items

on the lists they see. The difference in the average number of items reported by members of

the treatment and control groups is therefore an estimate of the prevalence of the sensitive

item in the larger population from which the sample was drawn. There have been numerous

applications of list experiments in recent years. Restricting attention to just studies of voter

fraud and election irregularities, list experiments have been deployed in Lebanon (Corstange,

2009, 2012), Nicaragua (Gonzalez-Ocantos et al., 2012), Russia (Frye, Reuter and Szakonyi,

2014), and the United States (Ahlquist, Mayer and Jackman, 2014). Kiewiet de Jonge

and Nickerson (2013) report numerous other applications from comparative and American

politics.2

1See Blair, Imai and Lyall (2014); Rosenfeld, Imai and Shapiro (2015) for discussions and comparisons
across several methods of indirect questioning.

2See also Gingerich (2010), Glynn (2013)
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With the advent of cheap and reliable Internet survey panels list experiments are easier

and cheaper to deploy than ever. Along with increased interest in list experiments have

come new design procedures (Glynn, 2013) and statistical estimators for list experiment

data, most notably the Item Count Technique (ICT) regression models (Blair and Imai,

2012; Imai, 2011). These estimators purport to tell us much more about the relationships

between covariates and the sensitive behavior than traditional difference-in-means analysis

(DiM).

Imai proposes a non-linear least squares and a fully specified maximum likelihood esti-

mator. The last of these is the key statistical innovation that has justifiably received the

most attention. This paper interrogates one of the key assumptions of the ICT maximum

likelihood estimator (ICT-MLE). Specifically, the ICT-MLE leans heavily on information

contained in responses at the extremes of the treatment group (admitting to 0 or all items).

Consequently the estimator requires strong assumptions about the truthfulness of respon-

dents’ answers (Imai’s no liars assumption). I argue that in actual applied settings responses

in this part of the distribution are particularly likely to result from error. The ICT-MLE

will be relatively sensitive to measurement or respondent error, especially when it appears

in the extremes.

Blair and Imai (2012); Chaudhuri and Christofides (2007); Glynn (2013) do important

work developing diagnostic tests and modeling extensions for strategic misrepresentation

(so-called floor and ceiling effects). Kuha and Jackson (2014) extend and improve the ICT-

MLE algorithm and variance estimation. But there is no work systematically examining

the robustness of these estimators under measurement error. In this paper I recapitulate

how assumptions regarding respondent accuracy are critical to the performance of the ICT

estimators and show that the assumptions required for unbiasedness in the DiM estimator

are weaker than those for ICT-MLE. I show that the ICT-MLE estimator is particularly

sensitive to violations of the no liars assumption. I then demonstrate that respondent error
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and estimator bias are more than just a hypothetical concerns; they can arise at non-trivial

levels in real applications that pass existing statistical tests.

The core of the paper presents results from a series of Monte Carlo experiments com-

paring the performance of ICT-MLE to simple difference-in-means analysis under several

hypothetical patterns of respondent error. The Monte Carlo results lead to four conclusions:

1) the ICT-MLE is biased even under no respondent error (contrary to earlier results); 2)

While respondent error induces bias in both the difference-in-means and ICT-ML estima-

tors, the ICT-ML estimator is far more sensitive to measurement error, especially when

this error manifests disproportionately as extreme-valued responses; 3) The bias induced by

respondent error becomes more extreme as the underlying prevalence of the sensitive item

decreases; 4) Given the bias in the ICT-ML estimator, a simple Hausman-style specification

test does not perform adequately. I conclude by offering some conjectures about when and

where respondent error is most likely to arise as well as possible strategies for mitigating

these problems.

1 Extracting information from indirect questions

List experiments are an indirect questioning method designed to measure the prevalence of

a particular attribute or behavior in some population. As running example, consider the

voter impersonation list experiment used in Ahlquist, Mayer and Jackman (2014). Figure 1

displays the question (and the YouGov user interface) for the treatment group.

List experiments have costs relative to direct questioning: they are harder to administer,

they are a less efficient use of the sample, and they may be confusing or off-putting to some

respondents. A researcher would therefore resort to a list experiment only when she has

reason to believe that:

1. For the sensitive topic there are respondents who do not want their answers to be
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Figure 1: An example of the user interface facing respondents to the YouGov survey employed
in Ahlquist, Mayer and Jackman (2014). The sensitive item is highlighted here; actual survey
respondents would not see the red box. Respondents in the baseline condition would see only
four items with the sensitive item omitted. The ordering of items in the list was randomized.

traceable to them individually, even if survey data are reported as anonymous and

even if the only person with any knowledge of the individual response is a survey

enumerator.

2. For the sensitive topic, at least some of the reticent respondents do harbor some latent

desire to answer truthfully and would do so given additional identity protection.3

List experiments do not automatically solve the problems that motivate their use, how-

ever. Respondents in two situations remain compromised: (i) those in the treatment group

who would answer affirmatively to all of the baseline items and the sensitive item and (ii)

those in the treatment group who answer negatively to all the baseline items and the sen-

3See a useful set of reflections on list experiments in Gelman (2014).
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sitive item. These respondents are still forced to choose between either truthfully revealing

their status or misrepresenting their answers. To the extent these situations are present

and respondents dissemble the list experiment is said to exhibit ceiling and floor effects,

respectively.

Survey design best practices recognize this. Kuklinski, Cobb and Gilens (1997) advise

that an appropriately designed list experiment will seek to minimize the number of re-

spondents put in this exact situation. Glynn (2013) urges applied researchers to identify

negatively correlated control items with non-trivial population rates to achieve a list that

avoids ceiling and floor effects while also minimizing the variance of the difference-in-means

estimator.

At the same time a new set of statistical tools have emerged for analyzing data from list

experiments, claiming to extract more information more efficiently than simple difference-

in-means tools. Existing work, however, fails to consider the consequences of measurement

error for these newer estimators.

1.1 Notation

We introduce some notation and definitions that closely follow Blair and Imai (2012); Imai

(2011).

We assume a random sample of N respondents from some population. Sample members

are indexed by i. Respondents confront a standard design list experiment in which there are

J control items. The indicator Ti denotes whether i sees the list with just J items (Ti = 0)

or sees the list with J control items and the additional sensitive item. Let Ci1(t), . . . , CiJ(t)

denote i’s latent response to each control item as a function of whether the respondent sees

the J-item (Ti = 0) or (J + 1)-item list (Ti = 1); Cij(t) = 1 implies an affirmative latent

response to control item j under treatment condition t. Let Zi(1) denote i’s latent response

to the sensitive item under the treatment condition and let Z∗i denote i’s truthful response
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to the sensitive item. Potential outcomes, Yi(t), are defined as

Yi(1) = Zi(1) +
J∑

j=1

Cij(1) (1)

Yi(0) =
J∑

j=1

Cij(0) (2)

Observed data are simply Yi(Ti).

The quantity of ultimate interest is the population prevalence of the sensitive item, i.e.,

Pr(Z∗i = 1) ≡ πZ∗ . Secondary quantities of interest may include parameters, θ, that describe

Pr(Z∗i = 1 | Xi; θ).

To identify the model below, Imai (2011) introduces three assumptions:

• Randomization: Ti ⊥ {Zi(1), Cij(1), Cij(0)}∀i

• No design effects:
∑J

j=1Cij(0) =
∑J

j=1Cij(1)∀i

• No liars: Z∗i = Zi(1)∀i

Note that the no design effects and no liars assumptions jointly imply the assumption

of no measurement error correlated with treatment at the individual level and that any

measurement error that does exist occurs only among the control items.

1.2 Difference in means estimator

The difference-in-means estimator of πZ∗ , henceforth DiM, is simply

τ̂ =
1

N1

N∑
i=1

TiYi −
1

N −N1

N∑
i=1

(1− Ti)Yi (3)

where N1 is the number of respondents in the treatment condition.

7



It is straight forward to show that OLS regression of Y on T is equivalent to DiM

estimation. Importantly, we can also show that the DiM estimator is unbiased under weaker

conditions than those stated above. If we allow for measurement error, ei, such that Yi =

Y ∗i + ei, then the DiM estimator becomes

Y ∗i = α + τTi + εi (4)

εi = ei + εi

where ε represents random sampling variation in Yi. From this expression, it is clear to see

that τ̂ is an unbiased estimator of πZ∗ so long as Cov(Ti, εi) = 0. The random assignment

of Ti achieves this so long as measurement error is uncorrelated with Ti. But note that

measurement error can occur anywhere in the response space so long as it is uncorrelated

with treatment on average. In other words, the DiM estimator only requires two sums;

measurement error can occur anywhere in the sum so long as, on average, the error is

expected to even out across treatment and control groups. Furthermore, the amount of bias

in τ̂ is directly determined by the magnitude of ei and the extent to which it is correlated

with Ti.

1.3 Identifying joint proportions

The DiM estimator relies on relatively weak assumptions. Glynn (2013) invokes (by other

names) the stronger no design effects and no liars assumptions in order to characterize the

joint distribution of (Yi(0), Z∗i ), thereby generating estimates of the population proportion

who would answer affirmatively to the sensitive item and exactly y of the control items. It

is then a short jump to including covariates.

To see this intuitively, consider a list experiment with J = 4 baseline items, as in Table 1.4

4See Glynn (2013:appendix D) for a more general formal derivation.
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DefineK(y, z∗) as the set of individuals with values (Yi(0), Z∗i ), i.e. the set that would respond

affirmatively to y baseline items (under the no-treatment condition) and with true response

of z∗ for the sensitive item. Let πy1 be the population proportion of people who would

answer yes to y control items and the sensitive item. Under the maintained identification

assumptions we know that all respondents who answer “0” in the treatment condition–the

first cell in the third column of the table–are certainly in K(0, 0) and all who answer “5” are

in K(4, 1). The remainder of the table describes the other combinations.

Table 1: Respondent types identified under the no design effect and no liars assumptions
for a J = 4 list experiment.

yi Baseline Treatment
0 K(0, 0) ∪ K(0, 1) K(0, 0)
1 K(1, 0) ∪ K(1, 1) K(1, 0) ∪ K(0, 1)
2 K(2, 0) ∪ K(2, 1) K(2, 0) ∪ K(1, 1)
3 K(3, 0) ∪ K(3, 1) K(3, 0) ∪ K(2, 1)
4 K(4, 0) ∪ K(4, 1) K(4, 0) ∪ K(3, 1)
5 ∅ K(4, 1)

From here we can characterize other quantities, for example π̂21. By the identification as-

sumptions, the baseline respondents answering “3” or higher are all the baseline respondents

in K(3, 0) ∪K(3, 1) ∪K(4, 0) ∪K(4, 1). Similarly everyone who answers “3” or higher in the

treatment condition are the treatment respondents in K(2, 1) ∪K(3, 0) ∪K(3, 1) ∪K(4, 0) ∪

K(4, 1). The disjointness of all these K(y, z∗) sets implies that |{yi : yi ≥ 3, Ti = 0}|/(N−N1)

is an unbiased estimator of (π30 + π31 + π40 + π41). Similarly |{yi : yi ≥ 3, Ti = 1}|/N1 is an

unbiased estimator of (π21 + π30 + π31 + π40 + π41). Thus an unbiased estimator of π̂21 is

π̂21 = |{yi : yi ≥ 3, Ti = 1}|/N1 − |{yi : yi ≥ 3, Ti = 0}|/(N −N1)

Clearly this exercise can be repeated to estimate any of the πy1 quantities. Summing the π̂y1

yields the DiM estimator in Equation 14 (see the appendix for a derivation).
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1.4 The ICT-ML model

Imai (2011) develops a maximum likelihood estimator for the joint distribution (Yi(0), Zi(t)).

The ICT-MLE is explicitly designed to generate better descriptions of the population hetero-

geneity of the sensitive item by efficiently including covariates in the model. The ICT-MLE

also generates individual-level predicted probabilities that a respondent possesses the sensi-

tive attribute.

Define J (t, y) as the set of respondents with values (Ti, Yi) = (t, y). Let g(x, δ) =

Pr(Zi(1) = 1 | Xi = x) and hz(y; x, ψz) = Pr(Yi(0) = y | Xi = x, Zi(1) = z), where

x represents a vector of covariates and δ, ψz are parameter vectors to be estimated. The

observed data likelihood can now be stated as

Lobs(δ, ψ0, ψ1) =
∏

i∈J (1,0)

h0(0; x, ψ0)(1− g(x, δ))×
∏

i∈J (1,J+1)

g(x, δ)h1(J ; x, ψ1) (5)

×
J∏

y=1

∏
i∈J (1,y)

{g(x, δ)h1(y − 1; x, ψ1) + (1− g(x, δ))h0(y; x, ψ0)} (6)

×
J∏

y=0

∏
i∈J (0,y)

{g(x, δ)h1(y; x, ψ1) + (1− g(x, δ))h0(y; x, ψ0)} (7)

A variety of distributional assumptions for g(·, ·) and hz(·, ·) are possible. In the Monte

Carlo exercises below I use the double binomial specification:

g(x, δ) = logit−1(x′δ) (8)

hz(x, ψz) = J × logit−1(x′ψz) (9)

In the Monte Carlos here we also constrain h0(x, ψ0) = h1(x, ψ1); this decision is inconse-

quential.

The likelihood described above is quite difficult to evaluate. The computational strategy
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pursued in Blair and Imai (2010, 2012); Imai (2011); Imai, Park and Greene (2014) involves

treating the Zi(1) as partially missing data and then deriving a much simpler complete data

likelihood that can be maximized via the EM algorithm. This computational strategy is

feasible only if the sets J (1, 0) and J (1, J + 1) are nonempty.

1.5 Random respondent error

The discussion in sections 1.2 and 1.3 makes clear the importance of the no liars assumption

for our ability to extract more information from list experiment data. Line (5) instantiates

that assumption in the likelihood in an important way: the sets J (1, 0) and J (1, J + 1)

are those respondents in the treatment group who reveal with (assumed) certainty that,

respectively, none and all of items on the treatment list apply to them. The composition of

these sets not only affects these key terms in the likelihood but it also affects the composition

of the sets J (1, y) in line 6. If these sets are empty then the ICT-MLE cannot be estimated.

Scholars using list experiments are sensitive to the assumption about truthfulness in

respondents at the extremes, as our discussion of ceiling and floor effects shows. Ceiling

and floor effects can be viewed as one type of (asymmetric) measurement error in which

some respondents who should appear in the extreme categories chose not to report those

true values. Ceiling effects imply a downward bias in π̂Z∗ regardless of the estimator. With

this in mind, Kuklinski, Cobb and Gilens (1997) and Glynn (2013) provide survey design

advice aimed at minimizing the subjects put in these positions. From the perspective of the

ICT-MLE, ceiling and floor effects are situations of intentional respondent misrepresentation,

situations that can be modeled. Blair and Imai (2012) provide a generalized ICT likelihood

that incorporates a model for ceiling and floor effects.

Without detracting from the important work on ceiling/floor effects, it is worth high-

lighting that virtually5 all work aimed at testing and relaxing ICT assumptions has focused

5Blair and Imai (2012) develop a simple test to identify departures from the no design effects assumption,
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on strategic behavior by respondents, ignoring the implications of simple respondent error

due to the usual problems of misunderstanding, rushing through surveys, and miscoding.

The presence or absence of ceiling/floor effects tells us nothing about whether random error

is also a concern, as we demonstrate in section 2. More importantly, the existing fixes for

ceiling and floor effects treat the error as entirely asymmetric: we are willing to believe that

some respondents strategically choose not to reveal an extreme value yet we also maintain

the assumption that all the observed responses in the extreme categories are in fact truthful.

The asymmetry and strength of these assumptions seem hard to justify.

The ICT-MLE relies heavily on the assumption that we can treat observed survey re-

sponses in the extremes of the treatment group distribution as truthful. But this assumption

flies in the face of the concerns about respondent truthfulness that motivate the use of indi-

rect questioning in the first place. Moreover, the parts of the response distribution needed

to identify and estimate the model are almost certainly prone to very small sample sizes.

In fact current survey design best practice involves taking steps to actively minimize the

number of respondents that appear in exactly the cells required to identify and estimate the

ICT-MLE. Both design objectives and the applied context for list experiments work against

the assumptions underlying the ICT-MLE.

1.6 possible patterns of error and consequences

It is uncontroversial to assert that respondent/measurement error is endemic in surveys.

The real questions surround the type of error and consequences for various estimators. In

considering this it helps to pose some simple models of the error process. For example, one

type of error, which I call uniform error would involve a process by which a respondent’s

truthful response is replaced by a random uniform draw from the possible answers available

to her, which in turn depends on the respondent’s Ti. Put another way, uniform random

which is not directly at issue here.
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error will be correlated with the treatment indicator for the same reason that we expect

heteroskedasticity in the DiM estimator: respondents in the treatment group have one more

value (J+1) in which to erroneously respond. We should therefore expect that uniform error

induces bias and inconsistency in the DiM estimator resulting in an overestimate of πZ∗ . The

degree of bias will depend, obviously, on the rate of error. Perhaps less obviously the longer

the list the lower the correlation between treatment indicator and uniform respondent error.

As J →∞ the bias problem disappears at the cost of increasing variance in the estimator.6

The ICT-MLE will also be biased and inconsistent under uniform error for the obvious reason

that the distributional assumptions that underpin the likelihood are incorrect. Uniform bias

will result in more values in higher categories, on average, under treatment so the ICT-MLE

will also over-estimate πZ∗ . Uniform error should be relatively innocuous compared to other

types of error described below, however, because only 2
J+1

of the erroneous responses in the

treatment group will be treated as true observed values of Z∗ under the no liars assumptions.

This simple discussion also has two important implications. First, whatever bias is in-

duced by error will be exacerbated as the population prevalence of the sensitive item de-

creases. Since the error is correlated with treatment a decline in the underlying prevalence

of the sensitive item implies that the observed difference between treatment and control

will be increasingly driven by measurement error. For the ICT-MLE, a lower underlying

frequency of the sensitive attribute implies there there will be fewer truthful-responders in

the J (1, J + 1) set. In the limit this set is composed entirely of noise, highlighting the

estimator’s sensitivity to assumptions about truthful response.

Second, the greater efficiency of the ICT-MLE under its assumptions, especially if covari-

ate information is brought to bear, will generate relatively tight standard errors around a

biased estimate if measurement error is a problem. The DiM estimator may be biased under

6To see the inutition here, let ei0 ∼ U [0, J ] and ei1 ∼ U [0, J + 1] be the discrete, uniform measurement
error for the baseline and treatment groups, respectively. We then get Yi = α+ τTi + ei1Ti + ei0(1−Ti) + εi.
As J →∞ E[e1 − e0]→ 0 which implies that Cov(Ti, ei)→ 0.
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uniform error but it is also noisier. The ICT-MLE, on the other hand, will not generate

inflated standard errors under its maintained assumptions raising the risks of Type-I error,

especially when sample sizes are smaller and the sensitive item is rare in the population.

Other error structures are obviously possible. I briefly consider three additional: bottom-

biased, top-biased, and extreme-biased. By bottom-biased error I envision an error process by

which the respondent’s truthful response is randomly replaced with “0.” Top-biased error

is similar only replacing the truthful response with the maximum value available to her.

Extreme-biased error would combine the two.

Bottom-biased error is interesting in that it is weakly correlated with treatment. The DiM

estimator should therefore remain nearly unbiased. The ICT-MLE, however will treats all

“0” responses in the treatment group as revelations of the absence of the sensitive attribute

and will therefore rely heavily on them in identification and estimation. Erroneously treating

respondents in the J (1, 0) group as truthful will downwardly bias the ICT-MLE π̂Z∗ . We

expect to see relatively little effect of bottom-biased error on DiM whereas there should be

substantial problems with ICT-MLE.

Top-biased error is likely to be the most problematic for both the DiM and ICT-ML

estimators. It is correlated with treatment, by construction, and this relationship will not

weaken as the list length grows. Errors in J (1, J + 1) will again present serious problems for

the ICT-MLE as the observed “J+1” responses are all treated as truthful and the number of

responses in this set should be small if we are following question design best practices. Top-

biased error should lead to severe over-prediction of πZ∗ for both estimators but I conjecture

that the ICT-MLE will perform worse, especially when the underlying rate for the sensitive

attribute is low.

Extreme-biased error should split the difference between top- and bottom-biased error.

It will induce bias in both estimators, but not as badly as purely top-biased error. It will be

more problematic than uniform error.
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To be clear these error structures are thought experiments; I am not asserting that

any describe actual behavior. Indeed I anticipate that any real population would exhibit a

mixture of error types. If we were to somehow correctly assume a particular error process

and its rate then it might be modeled. But having such knowledge in an applied setting

seems unlikely. Trying to model error by making more and stronger assumptions seems like

a high-cost, low-return strategy for addressing the measurement problem at hand.

2 An example

To demonstrate that this problem of respondent error and estimator bias is more than the-

oretical, I rely on the list experiments reported in Ahlquist, Mayer and Jackman (2014),

henceforth AMJ. AMJ use a YouGov Internet panel to ask questions about voter imperson-

ation and vote buying in the 2012 US election. The sample was split such that the control

group for the vote buying question served as the treatment group for the voter impersonation

question and vice versa.

AMJ find no evidence of either impersonation or fraud. Nevertheless, there are some

anomalies. First, the DiM estimates and ICT-MLE estimates are noticeably different, with

the ICT-MLE showing point estimates substantially larger than those using the simple mean

comparison procedure. Second, a non-negligible proportion of respondents (about 2.5% of

the treatment sample, twelve individuals) in the voter impersonation question claimed the

maximum number of items (5), thereby admitting to voter impersonation (in addition to a

variety of other things) if we assume these responses are truthful, as the ICT-MLE does.

One could therefore construe this 2.5% as a lower bound estimate for the rate of voter

impersonation. If this estimate were true then the survey implies that at least five million

people cast fraudulent ballots in the 2012 election—a shocking number inconsistent will all

other work on this topic.
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After examining the broader survey behavior of the respondents who claimed the max-

imum of five in the treatment condition for the voter impersonation question, AMJ find

further reason to treat these responses as suspect. Most of those choosing the maximum

value in the list experiments, whether in the treatment or control groups, appeared to be

rushing to complete the survey as fast as possible, not revealing actual behaviors.

To further investigate this conjecture AMJ fielded a second set of list experiments in

September 2013 with a new YouGov sample.7 In addition to replicating the original list

experiment questions they fielded two more list experiments as calibration exercises. The first

new question offered subjects the opportunity to admit to something believed to occur with

(near?)zero probability: abduction by extraterrestrials. The alien abduction list experiment

is described in appendix table 4. The second of the new list experiments asks respondents

about a common behavior that is illegal in most states: sending or reading text messages

while driving. The details of this question are found in appendix table 5. AMJ found two

previous large surveys on the subject of texting and driving. Madden and Rainie (2010)

find that that 27% of US adults have sent or read a text message while driving. Naumann

(2011) reports the results of cross-national surveys which estimates that about 31% of U.S.

drivers aged 18-64 years had sent an SMS while driving in the last 30 days. Both surveys

used direct questioning techniques.

Figure 2 displays population prevalence estimates for all four list experiments as calcu-

lated using both DiM and ICT regression.8 Several things are immediately apparent. First,

7N = 3000, three times the size of the original sample. Using the test proposed by Blair and Imai
(2012) there was no evidence leading to the rejection the null hypothesis of no design effect for any of these
questions.

8I use the double-binomial maximum likelihood estimator here and ignore survey weights reported in the
initial paper. In fitting the ICT regressions we included age, race, and gender as covariates. We also fit
models exploring ceiling and floor effects. In all cases where the floor/ceiling models converged there was
never any reason to prefer them over the simpler versions based on likelihood ratio tests. Finally, lest there
be worry that some respondents are intentionally responding to the abduction question as a lark, note that
AMJ pretested the alien abduction questions against an alternative which read “I won more than $1 million
in the lottery.” Findings were very similar between the two.
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the list experiment examining a relatively common behavior recovers rates of texting-while-

driving in line with previous estimates. The ICT and DiM estimates are very close to one

another and the uncertainty around the ICT estimates is substantially narrower, reflecting

the efficiency improvement in the ICT-MLE, bought with distributional assumptions and the

incorporation of covariate information. But when we turn to the low-prevalence questions

(impersonation and abduction) there are massive differences between the ICT-MLE and

DiM estimates. The DiM estimates for both voter impersonation and alien abduction are

very close to zero, consistent with both prior expectations and the earlier survey wave. The

ICT estimates are shockingly large and have relatively narrow standard errors, raising the

prospect of erroneous inference. Clearly something is happening to degrade the performance

of the ICT-MLE when the underlying prevalence of the sensitive item is low.

AMJ then go on to look at proportion of respondents in the treatment groups claiming

the maximum possible number of items (i.e., the sets J (1, 5)). Table 2 displays their findings.

The proportion of people answering the maximum is remarkably stable, around 2-3%, even

for sensitive behaviors that are far more common in the population (texting while driving).

The rate of 2.4% is especially remarkable for the alien abduction question, since answering

“5” in that context corresponds to admitting to alien abduction and serving on jury duty

and IRS auditing. The rate of IRS auditing in FY2013 was 0.96% (Internal Revenue Service,

2014), which implies that at least 60% of the respondents in J (1, 5) for the alien abduction

question are likely erroneous responses. Moreover, of those answering “5” for alien abduction,

24% (9/37) also answered “5” for voter impersonation.

All this leads to two conclusions. First, there is non-negligible respondent error in these

data, as we would expect with any real-world survey. Second, the ICT-MLE vastly overesti-

mates the prevalence of two sensitive attributes, both of which have very low (0?) population

prevalence.
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here. Bars are 95% CIs for the DIM estimates and ±2SEs for the ICT estimates. DIM =
difference-in-means, ICT= Item Count Technique regression.

3 Monte Carlo Experiments

To gain better purchase on sensitivity of the DiM and ICT-ML estimator to respondent error

I conduct a series of Monte Carlo experiments in which I vary the underlying prevalence of

the sensitive item and the rate and type of respondent error. I evaluate the simulations on

the following dimensions:

• Computational stability
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Table 2: The proportion of respondents selecting the most extreme value is very stable across
survey waves and questions. Source: Ahlquist, Mayer and Jackman (2014).

Wave % treated choosing “5” treated N
Voter impersonation Dec. 2012 2.5% 486
Voter impersonation Sept. 2013 2.7% 1528
Alien abduction Sept. 2013 2.4% 1528
texting while driving Sept. 2013 3.3% 1472

• Bias in the estimate of the population prevalence of the sensitive item

• Coverage rates of estimated 95% confidence intervals for population prevalence esti-

mates

• Bias in covariate parameter estimates

3.1 Monte Carlo design and notation

We begin with a fixed population, defined by eight attributes. Four binary attributes denoted

{C1, C2, C3, C4}, and four regression parameters, b1 and {bL0 , bM0 , bH0 }. The first four are used

to generate a hypothetical respondent’s values for each of four “control” items whereas

the last four are used to determine a respondent’s value on each of three “sensitive” items

occurring with low, medium, and high rates, respectively, in the population. In other words,

we use these population parameters to generate the latent values that underly the responses

to three hypothetical list experiments, each having the same J = 4 control items.

Each individual’s probability of answering affirmatively for each of the three sensitive

items is given by

Pr(Zk
i = 1) = logit−1(bk0 + b1xi), k ∈ {L,M,H} (10)

X ∼ N(0, 1)
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The only covariate is X. I fix b1 = 1.5 throughout. I choose values of bk0 such that the

underlying population prevalences are πL
Z∗ = 0.02, πM

Z∗ = 0.10, and πH
Z∗ = 0.25.

The population-level parameter values for each of the attributes are displayed in table 3.

Note the structure of the control items. C3 and C4 are relatively low- and high-frequency

attributes, respectively, designed to avoid ceiling and floor effects. C1 and C2 are common,

each appearing in half the population, but with a moderate negative correlation, following

the discussion in Glynn (2013). In other words, the underlying frequencies of the control

items are designed to make the list experiment as fruitful as possible.

Table 3: Key population-level parameters for the Monte Carlo experiments

Attribute True rate Comments
C1 0.50 cor(C1, C2) = −0.6
C2 0.50 cor(C1, C2) = −0.6
C3 0.15 independent of other attributes
C4 0.85 independent of other attributes
b1 1.5 covariate parameter
bL0 -4.92 intercept for πz = 0.02
bM0 -2.96 intercept for πz = 0.10
bH0 -1.54 intercept for πz = 0.25
µ 0 population mean for covariate X
σ 1 population standard deviation for covariate X

For each of the 1000 Monte Carlo runs I generate a sample of 1000 “respondents”, gen-

erating actual values for C1, . . . , C4 and zki based on the parameters just described. With

equal probability we randomly assign each of the respondents, i, to be in the treatment

group or the control group, denoted by binary variable Ti. For each of the respondents we
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then calculate the the error-free observed outcome for k ∈ {L,M,H} as

Y k
i | T i = 0 =

4∑
j=1

Cij

Y k
i | T i = 1 = zki +

4∑
j=1

Cij

That is, Y k represents the data we would hope to observe in a well-designed list experiment

with no measurement error and with respondents satisfying Imai’s three basic identification

assumptions.

We then introduce four different kinds of respondent error, each of which occurs at two

different rates. The two rates of error, r, are 0.02 and 0.06. The 2% rate is approximately

what was observed by Ahlquist, Mayer and Jackman (2014) whereas 6% represents a high

respondent error rate. The four kinds of respondent error induced here are:

• Uniform error: We randomly select 1000r respondents. For each of the selected

respondents, if Ti = 0 we replace Y k
i with a random draw from {0, 1, 2, 3, 4} for each

k. If Ti = 1 we do the same thing only drawing from {0, 1, 2, 3, 4, 5}.9

• Top-biased error: We randomly select 1000r respondents. For each of the selected

respondents, if Ti = 0 we replace Y k
i with a 4 for each k. If Ti = 1 we do the same

thing only with a 5.

• Bottom-biased error: We randomly select 1000r respondents. For each of the se-

lected respondents we replace Y k
i with a 0.

• Extreme-biased error: We randomly select 1000r respondents. For each of the

selected respondents, if Ti = 0 we replace Y k
i with a random draw from {0, 4} for each

k. If Ti = 1 we do the same thing only drawing from {0, 5}.
9Note that for a selected respondent we insert the same replacement value for each of the three Y k

i .
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Note that while all these forms of measurement error violate Imai’s no liars assumption,

they still leave us with data that satisfy the randomization and no design effects assump-

tions.10 Thus we can view this study as examining the estimators’ sensitivity to violations

of the no liars condition.

For each of the error types and rates within each Monte Carlo iteration we fit two models.

The first is the ICT-MLE with the double-binomial structure described above. I include X

as the only covariate. The second is the DiM, calculated as the OLS regression

Y k
i = αk + τ kTi + βkxi + δkTixi (11)

Following Imai (2011) we calculate heteroskedasticity-corrected standard errors for the OLS

regression.11

3.2 Results

The Monte Carlo results presented here took over 18 days to run in R 3.1.0 on remote

Linux-based server cluster using list v. 7.0.

3.2.1 computational stability

We first consider the computational stability of the ICT-MLE.12 Recall that the ICT-MLE

implemented in Blair and Imai (2010) relies on the EM algorithm to maximize an observed-

data likelihood, treating responses to the sensitive item as partially missing. The observed

Zi are derived from the J (1, 0) and J (1, J + 1) responses.

EM is known to be slow to converge or unstable when the amount of missingness is

10Were we to restrict measurement error to only occur among the Ti = 0 group we could maintain the no
liars assumption at the cost of violating the no design effects assumption.

11We also fit models with only an intercept and treatment indicator for the purposes of the Hausman test
discusses below.

12The DiM estimator had no computational difficulties.
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extreme relative to the observed values. The lower the prevalence of the sensitive item the

correspondingly fewer observed cases of Zi = 1 and the less stable we expect the algorithm to

be. Moreover, inducing error into the system will inflate the number of cases in J (1, J + 1);

this will obviously be most pronounced under top- and extreme-biased error. We therefore

expect the ICT-MLE to be most unstable in the low prevalence, no error condition. The

instability will be mitigated most rapidly by inducing error that skews into the top of the

response distribution.

lo
w

, n
on

e
lo

w
, 2

%
 u

ni
f

lo
w

, 6
%

 u
ni

f
lo

w
, 2

%
 b

ot
lo

w
, 6

%
 b

ot
lo

w
, 2

%
 to

p
lo

w
, 6

%
 to

p
lo

w
, 2

%
 x

tr
m

lo
w

, 6
%

 x
tr

m
m

ed
, n

on
e

m
ed

, 2
%

 u
ni

f
m

ed
, 6

%
 u

ni
f

m
ed

, 2
%

 b
ot

m
ed

, 6
%

 b
ot

m
ed

, 2
%

 to
p

m
ed

, 6
%

 to
p

m
ed

, 2
%

 x
tr

m
m

ed
, 6

%
 x

tr
m

hi
, n

on
e

hi
, 2

%
 u

ni
f

hi
, 6

%
 u

ni
f

hi
, 2

%
 b

ot
hi

, 6
%

 b
ot

hi
, 2

%
 to

p
hi

, 6
%

 to
p

hi
, 2

%
 x

tr
m

hi
, 6

%
 x

tr
m

ICT convergence & measurement error

%
 fa

ile
d 

co
nv

er
ge

nc
e

0

5

10

15

20

25

Figure 3: Percent of Monte Carlo runs in which the ICT-ML estimator was unable to run
appropriately. A low prevalence sensitive item makes the ICT-MLE less computationally
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23



Figure 3 displays the results from the Monte Carlo experiments. The ICT-MLE becomes

increasingly fragile as the underlying prevalence of the sensitive item decreases. In the low-

prevalence (2%) condition the algorithm failed to converge or otherwise kicked out an error

more than 25% of the time. This error rate declined markedly in the medium-prevalence

condition and vanished in the high prevalence condition. As shown in figure 3, inducing error

has a similar effect on the stability of the algorithm; error at the top extreme, even at low

levels, prevented convergence problems. This has some problematic implications: when the

underlying behavior of interest is rare but respondents are answering truthfully the algorithm

is less stable, but when there is error the estimator is more likely to return an answer, but

one that is biased (as we shall see).

3.2.2 bias in population prevalence estimates

Figure 4 presents the baseline findings with no measurement errors induced. The solid line

represents the distribution of the ICT-MLE error across the 1000 Monte Carlo simulations

while the broken line is the simple difference-in-means estimator.

In the absence of error, the difference-in-means estimator is unbiased. Unexpectedly

and contrary to the simulation studies by Imai (2011) and Blair and Imai (2012), the ICT-

ML estimator is showing bias even in the no-error setting. In both the low- and medium-

prevalence condition the ICT-MLE is more efficient, but around the wrong value. While it

may be argued that the sample size of 1000 is insufficient for the asymptotics of the MLE to

kick in we note that most mass surveys are conducted with samples around 1000 (see, e.g.,

Rosenfeld, Imai and Shapiro (2015)), so N = 1000 is a relevant threshold. Subsequent trials

with N = 2000 yielded similar results.

Figure 5 displays the distributions of bias for the uniform error situations. At low error

levels the DiM estimator is nearly unbiased regardless of the underlying prevalence of the

sensitive item. At higher error rates the DiM estimator is overestimating the true prevalence,
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no respondent error. Curves display the distribution of estimates across 1000 Monte Carlo
simulations. When the sensitive item is rare the algorithm has trouble converging; error,
especially at the top end, enables the algorithm to converge–but at the wrong answer.

as expected. The size of bias diminishes as the sensitive item becomes more common.

The ICT-MLE also seems affected by uniform error, even at low error levels, but not in

a consistent way. Uniform error appears to interact with the underlying prevalence to shift

the ICT-ML estimator in different directions. Again the ICT-MLE is showing less variance

than the DiM estimator.

Figure 6 presents a key finding: top-biased error severely upwardly biases the ICT-ML

estimator, even at low error levels. This bias is massive when the underlying prevalence of
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Figure 5: Bias in the ICT-ML (solid) and difference-in-means (broken line) estimators under
random respondent error across differing underlying frequencies of the sensitive item. Curves
display the distribution of estimates across 1000 Monte Carlo simulations.

the sensitive item is low: under r = 6% the ICT model puts the prevalence of the sensitive

item at a level 10× greater, on average, than the true value (21% as opposed to 2%). The

DiM estimator also shows upward bias, as expected, but not nearly to the same extent as the

ICT-MLE. As the underlying prevalence increases the severity of the bias in both estimators

diminishes, but the ICT-ML estimator remains the more affected.

Figures 7 and 8 look at bottom- and extreme-biased error, respectively. As expected

the DiM estimator remains unbiased under bottom-biased error. The ICT-MLE, however,
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Figure 6: Bias in the ICT-ML (solid) and difference-in-means (broken line) estimators under
top-biased respondent error across differing underlying frequencies of the sensitive item.
Curves display the distribution of estimates across 1000 Monte Carlo simulations.

exhibits strong downward bias. Bottom-biased error causing the ICT-MLE to underestimate

the population prevalence of the sensitive item by 5-10 percentage points under medium

prevalence and 10-20 percentage points under high prevalence. Extreme-biased error, as

shown in figure 8, continues to induce bias in the ICT-MLE, but, as one would expect, the

bias does not reach the same levels as with pure top- or bottom-biased respondent errors.
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Figure 7: Bias in the ICT-ML (solid) and difference-in-means (broken line) estimators under
bottom-biased respondent error across differing underlying frequencies of the sensitive item.
Curves display the distribution of estimates across 1000 Monte Carlo simulations.

3.3 Standard error estimates & CI coverage rates

The estimated standard errors around the π̂k
Z∗ become increasingly important given the bias

in the ICT-MLE just discovered. Small standard errors combined with biased estimates raise

the risk type-I errors. To evaluate the performance of the two estimators, I construct two

sets of displays. In figure 9 I compare the standard deviations of the estimated π̂k
Z∗ across the

1000 Monte Carlo runs against the standard errors for π̂k
Z∗ calculated at each Monte Carlo

iteration, averaged across the 1000 iterations. That is, the figure reports SD(π̂k
Z∗)− ŜE(π̂k

Z∗)
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Figure 8: Bias in the ICT-ML (solid) and difference-in-means (broken line) estimators under
extreme-biased respondent error across differing underlying frequencies of the sensitive item.
Curves display the distribution of estimates across 1000 Monte Carlo simulations.

as a way of describing the bias in the ICT-ML and DiM estimates of their respective sampling

distributions.

The results are stark. The DiM standard error estimates are unrelated to the underlying

prevalence of the sensitive item in all conditions. They are unbiased in the no error and

bottom error conditions. Under uniform error DiM does begin to overestimate the standard

errors; this gets worse under extreme error and worst under top-biased error. But the

problems in the DiM estimates are minor compared to the ICT-MLE. The ICT-MLE bias in
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Figure 9: Difference between the standard deviation of Monte Carlo population prevalence
estimates minus the mean estimated standard error for prevalence estimates across 100 Monte

Carlo runs (SD(π̂k
Z∗)− ŜE(π̂k

Z∗)). DiM standard errors are heteroskedasticity-corrected.

standard error estimates are significant, even under the no error condition and show a strong

positive correlation with πZ∗ in all conditions. When the population prevalence is high the

ICT-MLE is underestimating standard errors and when it is low it is overestimating them.

Error, especially bottom and top biased exacerbate this relationship.

In the second set of displays, figure 10, I calculate coverage rate: the percent of simulations

in which the 95% nominal confidence interval for π̂k
Z∗ actually contains πk

Z∗ . Again the results

are stark. The DiM estimator performs as expected: coverage is unrelated to the underlying
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prevalence of the sensitive item for all conditions. Under the no error and bottom-biased

conditions the confidence intervals perform as they should. Top and extreme biased error

give 95% CIs that are somewhat too narrow. Again, however, the problems with the DiM

estimator are minor in comparison to the ICT-MLE. Even under no error the standard

errors are far too narrow. Top- and extreme-biased errors produce exactly what we feared:

estimates are badly biased and standard errors are too small such that virtually none of

the ICT-MLE estimated confidence intervals contained the true value when the underlying

prevalence is low.

3.4 Covariate parameter estimates

The ICT-MLE was specifically built to include covariates. We therefore included the covari-

ate, X, in the Monte Carlo experiments. Using the double-binomial ICT-MLE specification

we can compare the estimated coefficient from the g(δx) part of the ICT-ML model in equa-

tion 8 to b1 = 1.5 from equation 10. For the DiM estimator we calculate bias in the covariate

parameter by differencing the marginal effect of X on Pr(Zi = 1 | Xi = 0) implied by

equation 10 from the δ̂ defined in equation 11.13

Results are displayed in figure 11. Again we see bias in the ICT-ML estimate, this time for

covariate parameters. Even in the no error setting ICT-MLE is systematically overestimating

the covariate parameter by anywhere from 5-30%. Note that the accuracy of the ICT-MLE

is strongly correlated with the underlying prevalence of the sensitive item. This relationship

can be viewed as a rare events logit problem (King and Zeng, 2001): there are very few

observed “1s” in the low prevalence context, inducing bias that rapidly decreases as the

event becomes more common. Interestingly, error (except the bottom-biased variety) seems

to actually improve the performance of the ICT-MLE, reducing bias in the low-prevalence

situations. This is an artifact of the simulation design: error is uncorrelated with X by

13The implied marginal effect evaluated at E[X] = 0 is given by b1 exp(bk0)/(1 + exp(bk0))2.
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Figure 10: Coverage rates for 95% nominal confidence intervals for πz based an assumed
Normal sampling distribution. ICT-MLE (solid) and DiM (broken line) estimators under
differing underlying frequencies of the sensitive item and differing error rates. DiM standard
errors are heteroskedasticity-corrected.

construction and it artificially inflates the number of observed “1s”, thereby mitigating the

rare events problem. DiM estimates are slightly sensitive to πZ∗ but in general show much less

bias than the ICT-MLE. Even in the domain that motivates the ICT-MLE—the inclusion of

covariates—we see that the estimator is returning biased answers in some cases and showing

much more sensitivity to respondent error than the DiM/OLS approach.
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Figure 11: Bias in covariate parameter estimates as % of true parameter value for different
estimators, error types and error rates. For DiM estimates we compare the regression pa-
rameter estimate to the marginal effect of X on Pr(Zi = 1 | Xi = 0) implied by equation 10.

4 Implications and working toward solutions

While error can cause problems for both the DiM and ICT-MLE, the Monte Carlo simulations

show the ICT-MLE’s sensitivity to violations of the no liars assumption. The DIM estimator

is the more robust in all cases. Problems with bias are compounded as the sensitive attribute

becomes rarer in the population.

These findings lead us to consider—and reject—some possible solutions to the problem

and then to consider when biased error is more likely to arise. We conclude with some advice
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to applied researchers considering list experiments.

4.1 Solutions that will not work

4.1.1 Hausman Test

If the ICT distributional assumptions are correct then both the difference-in-means and the

ICT estimators are consistent, but the ICT estimator, as a maximum likelihood estimator,

is the more efficient. If the ICT distributional assumptions are not met then ICT estimator

is no longer consistent while the difference-in-means estimator is. This represents a special

(scalar) case of the Wu-Hausman test.

H = (π̂ICT − π̂DiM)(V̂ar(π̂DiM)− V̂ar(π̂ICT ))−1(π̂ICT − π̂DiM) (12)

H|h0 ∼ χ2
1 (13)

where π̂ICT and π̂DiM are the estimated population prevalences of the sensitive item from

the ICT and difference-in-means estimators, respectively, and V̂ar(π̂DiM), V̂ar(π̂ICT ) are the

estimated variances.

Unfortunately, the Monte Carlo results show that the ICT-MLE is not generating unbi-

ased estimates of either the quantity of interest or the variance around that estimate. As a

result a Hausman specification test will not be yield useful findings.14

4.1.2 CACE analysis/instrumental variables

List experiments are measurement devices, not actual experiments designed to identify a

causal effect. But we might think to view list experiments through the lens of treatment

noncompliance. Being in the treatment group is now an attempt to “treat” a respondent

14We also estimated the Hausman test statistic in the Monte Carlos just described. Monte Carlo results
confirmed the Hausman test performed poorly. Results are omitted here for space considerations.
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who may or may not comply (answer truthfully) with the treatment regimen. Analyzing

experiments under noncompliance typically requires that we have information on those in the

treatment group who actually comply with treatment and assume monotonicity in treatment

assignment in order to estimate the complier average causal effect (CACE) using instrumental

variables (Angrist, Imbens and Rubin, 1996). In the context of the list experiment this

information on compliance among the treated is obviously missing. Moreover, even if this

information were available we are not actually interested in the CACE. We are interested

in the population prevalence of the sensitive item, the list experiment estimate of which is

composed of those who will truthfully reveal their status in the treatment arm on the survey

(“compliers”) as well as those who do not. This latter group is composed of both random

error and those who will never reveal their status. Successfully estimating a CACE, even if

this were possible, would, at best, yield a lower bound on πZ∗ .

4.2 Situations likely prone to error

This sensitivity of the ICT-MLE to different error types and the less pronounced but still

worrisome bias in the DiM estimator begs the questions of when different sorts of respondent

error are more likely to arise. An obvious variable to consider is survey mode. I conjecture

that there are likely to be risks associated with Web-administered survey that are particularly

pernicious under the ICT-MLE framework. I hasten to add that my conjectures are, at this

point, untested and warrant future research.

Incentivized, Internet-based panels like YouGov would seem to reduce some risks of re-

spondent error while possibly amplifying others. On the positive side of the ledger, Internet-

based surveys provide a level of anonymity and noninvasiveness that in-person or phone-based

surveys cannot readily match (Gooch and Vavreck, forthcoming). The greater perceived

anonymity of Web-based or other self-completed surveys may reduce the severity of list

experiment design and floor/ceiling effects. On the negative side, however, Internet-based
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surveys seem particularly likely to generate respondents rushing through the survey for at

least two reasons. First, there is no interviewer who can control the pace of survey adminis-

tration (though one can imagine several technical interventions to mitigate this problem). As

a result we may get more noise, in general, with an Internet-administered survey. Second,

at least in the YouGov example just described, it is easy for respondents to simply leave

their cursors in one place and rapidly click through the survey; the AMJ analysis seems to

indicate that this is more than just a passing concern. Depending on the positioning of click

boxes on the screen and the defaults of both the survey and the user’s Internet browser, such

behavior could potentially lead to a variety of possible types of respondent error, including

error systematically biased toward the extreme answers. Surveys taken on touchscreen de-

vices will almost surely be even more prone to such problems. Combining these mode-based

challenges with the ICT model’s sensitivity to respondent error at the extremes could make

Internet panels a dangerous environment in which to deploy such analysis tools. Systematic

investigation of survey mode effects for indirect questioning has yet to occur.

4.3 Some advice

Unfortunately we do not yet have tools for determining the levels, rates, and structure of

respondent error. But we can offer some advice.

List experiments are poor tools for finding rare events and behaviors. Contrary to conclu-

sions in Kiewiet de Jonge and Nickerson (2013), which rely on real surveys and not controlled

Monte Carlo studies, survey list experiments are likely to be poor tools for reliably estimating

small values of πZ∗ . This is not surprising: mass surveys are notoriously weak at establishing

the prevalence of rare attributes even when direct questioning is reasonable. List experiments

are even less effective in that regard, but the likely bias in the list experiment analysis tools,

especially ICT-MLE, provides an additional reason for caution. The DiM estimate (which

preformed adequately in the Kiewiet de Jonge and Nickerson (2013) studies) should be the
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initial point of departure.

Some would argue that list experiments (or even mass surveys) should be avoided entirely

if we have prior beliefs that the sensitive attribute is rare. This seems a step too far. If we

already knew knew the true population prevalence we would not need to run a survey. If the

attribute of interest were easy to talk about we could be more confident in our priors and

would not feel the need to employ indirect questioning. Realistically, as in AMJ, there will

be attributes of interest that are arguably worth investigating with list experiments that turn

out to be very rare in the population. Applied researchers need to recognize that available

tools are fragile in such situations.

Adjust survey administration to minimize error. This advice seems trite, so let me of-

fer more specific suggestions. First, careful pretesting is a must. Second, administration

techniques should endeavor to make sure respondents are paying attention. Phone- and

in-person enumerators can be trained to slow down or confirm responses to list experiment

or other more complicated question forms. They can also make subjective judgments about

respondents’ levels of engagement in the survey. We can imagine several design strategies

for electronically-administered surveys to slow users down and induce them to pay more

attention. For example, survey interfaces could randomly move the text and responses to

different points around the screen so as to force users to at least minimally adjust. Confir-

mation stages for certain responses could be introduced. Silly questions can be included to

see if respondents are paying attention. Forcing respondents to pay attention may or may

not increase truthfulness but it will likely increase the number of non-truthful responses that

are amenable to modeling as ceiling and floor effects relative to the less tractable random

error situation. All these interventions have costs, however, and will preclude asking more

substantively interesting questions. Best practices in this area have yet to be developed.

Given that some error is unavoidable, we would like to convert any systematic biases in

these errors into random noise, i.e., make trop. If error is due to respondents repeatedly
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clicking or answering in the same way in an effort to rush through the survey then some

immediate solutions present themselves. In an electronic interface the survey designer can

randomize the order in which the possible responses are presented. For example, in the

interface depicted in figure 1 we would like the radio buttons for the responses to be shuffled

randomly. Other options include pull-down menus where the ordering of the values can

be randomized across questions or requiring the respondent to type in a numerical value,

returning an error if the person typed in a number that is not admissible. When a respondent

is not paying attention these strategies have the virtue of converting what might be dangerous

top- or bottom-biased error into something looking more like uniform error.

Ask both direct and indirect versions of the question. Echoing the advice in Blair and

Imai (2012); Glynn (2013), asking both direct and indirect versions of the question is useful

whenever doing so does not endanger respondents or enumerators. In addition to the reasons

given by others, asking both versions of the question allows the analyst to compare whether

those who answer affirmatively to the direct question are also those deemed likely to have

the attribute when the list experiment is analyzed.

Ask calibration questions if possible. Both AMJ and Kiewiet de Jonge and Nickerson

(2013) make good use of ancillary list experiment questions that have treatment items of

either very low or very high prevalence in order to bound error rates and respondent per-

formance. Asking such questions is costly, however, and may not we worthwhile in certain

contexts. But they appear to be a useful tool to examining how the sample at hand is

actually reacting to indirect questioning, especially at the extremes.

Consider multiple or other indirect question modes Rosenfeld, Imai and Shapiro (2015)

conduct an exhaustive validation study of the three major types of indirect survey questions

(list, endorsement, and randomized response). Consistent with results here they also find

that the list experiment (analyzed with a Bayesian extension of the ICT-MLE approach)

produces population prevalence estimates that are biased (relative to the known truth and
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other question modes) yet still far better than direct questioning. Which question mode

is most appropriate in a particular situation is not obvious and a multiple-method, tri-

angulation strategy may be worth pursuing, although, again the costs in terms of time,

cognitive demands on respondents, technical administration, and efficient use of data are all

non-trivial.

Track and examine respondents’ broader behavior in the survey when using electronically

administered surveys. In determining the scale and type of respondent error researchers

should get in the habit of tracking respondent behavior throughout the survey. Obviously

this is easier an more accurate in computer-mediated modes. Some useful metrics include

total survey spent on the survey, how long they spent on particular pages or questions, and

whether they logged out and then completed the survey later.

The behavior of respondents at the extremes of the list experiment distribution should

be of particular concern to researchers thinking of employing the ICT-MLE. Are these re-

spondents spending less time on the list experiment page than other respondents? Are they

answering nearby questions in a similar way? Is there straight-line behavior in other parts

of the survey? If so is it systematically skewed in a particular direction?

Compare ICT-MLE and DiM estimates. Simple and transparent difference-in-means

analysis should be the place to start. If covariates are not a concern in a particular application

then ICT-MLE becomes even less attractive as an analysis tool. If ICT-MLE is used its

results should be compared to those from DiM. If the underlying prevalence of the sensitive

item is shown to be low and/or the two estimates diverge sharply this should be viewed as

evidence that there is likely significant respondent error in the data. In interpreting this

error analysts should obviously conduct the diagnostics for ceiling and floor effects described

in Glynn (2013) and Blair and Imai (2012). Conditional on results from ceiling and floor

analysis, large divergence between DiM and ICT-MLE, especially when DiM returns a null

result, should be viewed as an indication that ICT-MLE results may not be reliable.
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Care should be taken in using the ICT-MLE output as a covariate. The big selling point

of the ICT-MLE is its ability to generate individual-level predictions that a particular re-

spondent has the sensitive attribute. This individual-level ability is bought by invoking the

individual-level no liars assumption. Imai, Park and Greene (2014) have taken the next

logical step, building both two-stage and full likelihood models in which individual-level

propensities to possess the sensitive attribute (estimated from ICT-MLE) are then used as

predictors for another behavior of interest. For example, suppose a researcher runs a list

experiment designed to ask respondents about racial attitudes toward African-Americans.

ICT-MLE will yield estimates of each respondents level of anti-Black sentiment. The re-

searcher might then want to use that quantity as a regressor in a model that predicts levels

of support for President Obama.

The sensitivity of the ICT-MLE to measurement error may make this strategy problem-

atic in actual applied situations. Even small levels of respondent error can induce severe bias

as well as over confidence in results. Building this bias into a second stage model, whether

estimated sequentially or jointly, seems hazardous. While formal Monte Carlo work incor-

porating measurement error for this specific enterprise remains to be done the results here

should give pause.

5 Conclusion

Inspired by the odd findings in AMJ’s real world application of the ICT-MLE, this paper

further considered the dangers of random measurement error (as opposed to strategic mis-

representation) for the analysis of list experiments. We interrogated the key, individual-level

no liars assumption needed to identify the ICT-MLE. This assumption requires that all

responses in the extremes of the treatment-group distribution be viewed as truthful revela-

tions of the respondent’s status on the sensitive item. The conventional difference-in-means
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estimator does not require the individual-level no liars assumption for unbiased estimation.

I argued that the no liars assumption is contrary to the applied researcher’s rationale

for using a list experiment in the first place, namely that respondents are reticent about

truthfully revealing their status on the sensitive item. I showed that the ICT-MLE is partic-

ularly sensitive to deviations from this assumption both theoretically and computationally,

especially when the number of respondents in the extremes is small. I then pointed out

that current best practices for the design of list experiments entail minimizing the number of

respondents appearing in the extremes of the response distribution–exactly the cells that the

ICT-MLE requires for identification and estimation. In other words, compounding problems

of measurement error, design best practices are directly at odds with the computational

requirements of the ICT-MLE. The ICT-MLE relies heavily on the assumed absence of error

in parts of the treatment group response distribution that are subject to very small sam-

ples and carry an elevated risk of being erroneous based on the applied situation motivating

indirect questioning in the first place.

We then constructed a series of Monte Carlo experiments, comparing the difference-in-

means estimator to the ICT-MLE under different rates and types of measurement error. We

found that inducing error creates problems for both estimators, but the ICT-MLE is far

more sensitive. Survey respondent error, even at low levels can induce severe bias in the

ICT-MLE depending on the type of error and the underlying frequency of the sensitive item.

The difference-in-means estimator, while not impervious to respondent error, is much less

prone to generate erroneous inference when survey responses are measured with error.

Based on these findings I offered some preliminary advice for applied researchers. Key

among them are pretest carefully and start with DiM analysis. When ICT-MLE and DiM

estimates diverge be extremely cautious, especially when the sensitive item is found to be

rare. The extent to which measurement error causes problems for either of Imai, Park and

Greene (2014)’s two-stage or full likelihood models is an open question for future research.
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Similarly, technical and survey mode interventions designed to mitigate measurement error

problems in list experiments remain to be tested.

A Derivation of alternative DiM calculation

Letting Nx
1 = |{i : yi = x, Ti = 1}| and (N − N1)

x = |{i : yi = x, Ti = 0}| we can rewrite

equation 3 as

τ̂ =
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1 + . . .+ 0N0
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− 1
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That is, we can calculate the DiM estimator by taking the difference between baseline pro-

portion and treament proportion of respondents saying at least j and then summing these

differences across j = 0, . . . , J + 1

B AMJ experiment questions

Table 4: Impossible event list experiment (September 2013 wave)

Prompt: “Here are some things that may have happened to you during the past
twelve months. HOW MANY of these events happened to you?”

1 “I was asked to serve on a jury”
2 “I was called by a telemarketer”
3 “I was audited by the IRS (Internal Revenue Service)”15

4 “An airline cancelled my flight reservation”
Treatment “I was abducted by extraterrestrials (aliens from another planet).”
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Table 5: Common illegal/undesirable behavior list experiment (September 2013 wave)

Prompt: “Here are some things that you might have done during the past 30 days.
HOW MANY did you do?”

1 “I travelled to a foreign country”
2 “I flossed my teeth”
3 “I littered in a public place”
4 “I celebrated my birthday”
Treatment “I read or wrote a text (SMS) message while driving”
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