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A Identifying joint proportions

The DiM estimator relies on relatively weak assumptions. Glynn (2013) invokes (by other
names) the stronger no design effects and no liars assumptions in order to characterize the
joint distribution of (Yi(0), Z∗

i ), thereby generating estimates of the population proportion
which would answer affirmatively to the sensitive item and exactly j ≤ J of the control
items. It is then a short jump to including covariates.

To see this intuitively, consider a list experiment with J = 4 baseline items, as in Table 1.1

DefineK(y, z∗) as the set of individuals with values (Yi(0), Z∗
i ), i.e. the set that would respond

affirmatively to y baseline items (under the no-treatment condition) and with true response
of z∗ for the sensitive item. Let πy1 be the population proportion of people who would
answer yes to y control items and the sensitive item. Under the maintained identification
assumptions we know that all respondents who answer “0” in the treatment condition–the
first cell in the third column of the table–are certainly in K(0, 0) and all who answer “5” are
in K(4, 1). The remainder of the table describes the other combinations.

Table 1: Respondent types identified under the no design effect and no liars assumptions
for a J = 4 list experiment.

yi Baseline Treatment
0 K(0, 0) ∪ K(0, 1) K(0, 0)
1 K(1, 0) ∪ K(1, 1) K(1, 0) ∪ K(0, 1)
2 K(2, 0) ∪ K(2, 1) K(2, 0) ∪ K(1, 1)
3 K(3, 0) ∪ K(3, 1) K(3, 0) ∪ K(2, 1)
4 K(4, 0) ∪ K(4, 1) K(4, 0) ∪ K(3, 1)
5 ∅ K(4, 1)

1See Glynn (2013:appendix D) for a more general formal derivation.
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From here we can characterize other quantities, for example π̂21. By the identification as-
sumptions, the baseline respondents answering “3” or higher are all the baseline respondents
in K(3, 0)∪K(3, 1)∪K(4, 0)∪K(4, 1). Similarly eone who answers “3” or higher in the treat-
ment condition are the treatment respondents in K(2, 1)∪K(3, 0)∪K(3, 1)∪K(4, 0)∪K(4, 1).
The disjointness of all these K(y, z∗) sets implies that |{yi : yi ≥ 3, Ti = 0}|/(N − N1) is
an unbiased estimator of (π30 + π31 + π40 + π41). Similarly |{yi : yi ≥ 3, Ti = 1}|/N1 is an
unbiased estimator of (π21 + π30 + π31 + π40 + π41). Thus an unbiased estimator of π̂21 is

π̂21 = |{yi : yi ≥ 3, Ti = 1}|/N1 − |{yi : yi ≥ 3, Ti = 0}|/(N −N1)

Clearly this exercise can be repeated to estimate any of the πy1 quantities.
Summing the π̂y1 yields the DiM estimator. To see this, Let Nx

1 = |{i : yi = x, Ti = 1}|
and (N −N1)

x = |{i : yi = x, Ti = 0}| we can rewrite Equation 3 in the main text as
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That is, we can calculate the DiM estimator by taking the difference between baseline pro-
portion and treatment proportion of respondents saying at least j and then summing these
differences across j = 0, . . . , J + 1

B Additional Detail on the Monte Carlo Experiments

I examine J = 3 and J = 4 lists. To generate these lists each individual has J binary
attributes, denoted {C1, . . . , CJ}, used to generate a hypothetical respondent’s values for
each of J “control” items. The parameter values for each of the attributes for each list are
displayed in table 2.

I investigate two different sets of list structures. The first set of lists generates control
items following two of the protocols that Blair and Imai (2012) take from Corstange (2009).
In these lists all control items are independent. In the second set—referred to as the “de-
signed” lists—I construct the control item lists to conform to current recommendations for
avoiding strategic misrepresentation. In both the J = 3 and J = 4 designed lists C1 and C2

are relatively common in the population but with a moderate negative correlation, following
the discussion in Glynn (2013). C3 and C4 are relatively low- and high-frequency attributes,
respectively, designed to reduce the risk of ceiling and floor effects.

For each of the 2000 Monte Carlo runs I generate a sample of N = 1000 “respondents.”
With equal probability I randomly assign each of the respondents to be in the treatment
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Table 2: Parameters for the control item lists in the Monte Carlo experiments.

Blair-Imai Designed

J = 3 J = 4 Correlation J = 3 J = 4 Correlation

C1 0.50 1/6 independent 0.50 0.50 cor(C1, C2) = −0.6
C2 0.50 1/2 independent 0.50 0.50 cor(C1, C2) = −0.6
C3 0.50 2/3 independent 0.15 0.15 independent
C4 2/3 independent 0.85 independent

group or the control group, denoted by binary variable Ti. For each of the respondents we
then calculate the the error-free observed outcome for k ∈ {L,M,H} as

yki | T i = 0 =
J∑

j=1

cij

yki | T i = 1 = zki +
J∑

j=1

cij

That is, Y k represents the data we would hope to observe in list experiments satisfying
Imai’s three basic identification assumptions with no measurement error but under different
structures of the control lists and different population frequencies for the sensitive item.

C “Designed” Lists with N = 2000

In this section I report results from Monte Carlo simulations identical to the “designed lists”
described in the main text but doubling the “sample size” to N = 2000.

As explained in Section 4.1 of the manuscript, I do not expect doubling the sample size
to materially alter the findings reported in the main paper for two reasons. First, doubling
the sample size does not solve the fundamental conceptual tension between the no liars
assumption and the rationale and design of a list experiment. Second, small samples in
the extrema are causing computational difficulties and instability. We expect the number
of observations in these cells to grow only linearly in N . Doubling the values in Table 3 of
the main text, especially under the designed list, would not be of much help. Monte Carlo
results largely confirm this.

I present results for the J = 4, low prevalence condition here because becasue it represents
the most extreme, challenging case for the ICT-MLE that highlights the paper’s fundamental
contribution. Results here differ from those in the main text in only minor ways that are to
be expected with a small increase in the number of observations in the extremes.
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C.1 Convergence, stability, and bias in b̂L1

Table 3 displays the analogue to Figure 2 in the main text. Doubling the sample size
increases the number of observations in J (J + 1) about twofold. This has the expected
effect of reducing the rate at which the ICT-MLE fails to run, consistent with Figure 2 of
the main text.

Table 3: Computational stability and the number of observations in J (J + 1) for the J = 4,
low prevalence condition with N = 2000.

Error Mean obs∈ J (1, J + 1) % runs with J (1, J + 1) = ∅ % runs crashed

none 2.2 10.6 1.4
3% 32.1 0.0 0.0

Notwithstanding improved algorithm convergence (i.e., failure to exit with an error),
we still observe instability in the actual ICT-MLE regression parameter estimates under
the no error condition. Table 4 displays the distribution of estimates for b̂L1 , both with
and without error. Recall that the regression parameters are bL0 = 0 and bL1 = −4. The
population proportion for the sensitive attribute is ≈ 12%. This table is analogous to Table
4 and Figure 4 in the main text. We see that even when the ICT-MLE does run the very
small numbers of observations in J (1, J + 1) in the no-error condition make the estimator
unstable. Inducing top-biased error stabilizes the estimation but results in upwardly biased
b̂L1 . Doubling the sample size had little effect on this result compared to the main text.

Table 4: The distribution of b̂L1 for the J = 4, low prevalence condition with N = 2000. The
true parameter value is bL1 = −4.

no error 3% error

1st Qu. -12.17 -2.19
Median -7.75 -1.60
Mean -204.60 -1.61
3rd Qu. -5.03 -1.03

C.2 Bias and variance in π̂LZ∗

Table 1 displays the distribution of estimates for π̂L
Z∗ for both DiM and ICT-MLE with and

without error. This table mirrors the results presented in Figure 6 of the main text almost
exactly.
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Figure 1: Distribution of point estimates for π̂L
Z∗ for the DiM and ICT-ML estimators with

and without 3% top biased error.

D Further details on the AMJ list experiments

D.1 YouGov Interface for the AMJ Experiments

Figure 2 displays the question (and the YouGov user interface) for the treatment group.

D.2 AMJ calibration lists
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Figure 2: An example of the user interface facing respondents to the YouGov survey employed
in Ahlquist, Mayer and Jackman (2014). The sensitive item is highlighted here; actual survey
respondents would not see the red box. Respondents in the baseline condition would see only
four items with the sensitive item omitted. The ordering of items in the list was randomized.

Table 5: Impossible event list experiment (September 2013 wave)

Prompt: “Here are some things that may have happened to you during the past
twelve months. HOW MANY of these events happened to you?”

1 “I was asked to serve on a jury”
2 “I was called by a telemarketer”
3 “I was audited by the IRS (Internal Revenue Service)”2

4 “An airline canceled my flight reservation”
Treatment “I was abducted by extraterrestrials (aliens from another planet).”

Glynn, Adam. 2013. “What Can We Learn with Statistical Truth Serum? Design and
Analysis of the List Experiment.” Public Opinion Quarterly 77:159–72.
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Table 6: Common illegal/undesirable behavior list experiment (September 2013 wave)

Prompt: “Here are some things that you might have done during the past 30 days.
HOW MANY did you do?”

1 “I traveled to a foreign country”
2 “I flossed my teeth”
3 “I littered in a public place”
4 “I celebrated my birthday”
Treatment “I read or wrote a text (SMS) message while driving”
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